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A B S T R A C T

By introducing  -symmetric 𝛿-function potentials into three-component Gross–Pitaevskii equations that
describe spinor 𝐹 = 1 Bose–Einstein condensates, we obtain stable and unstable analytical peakon solutions
which enable us to explore the patterns of mean-field and spin-exchange interaction in relation to variations in
energy of nonlinear modes. Furthermore, using iterative algorithms, we generate a series of numerical solutions
and represent several families of peakon solutions in the form of energy curves, examining the impact of
parameters on energy. Additionally, we observe a closed-loop structure in the family of peakons, with 𝑃0 and
𝜇0 serving as the coordinate axes. On this curve, we discover stable peakons exhibiting periodic oscillatory
properties, which can be regarded as a form of internal energy transfer within the coupled system. This research
could contribute to a more comprehensive understanding of coupled nonlinear systems and serve as a reference
for future experiments in this domain.
1. Introduction

Bose–Einstein condensates (BECs), the phenomenon of a pronounced
increase in wave-like behavior as temperature decreases in atomic
gases, has enabled the expansion of quantum mechanics into macro-
scopic sizes [1]. Recent years have witnessed diverse research fields
concerning BECs [2–5], a single-component  -symmetric Gross–
Pitaevskii equation (GPE) describing a fundamental category of the
systems has also been extensively studied [6–10]. As an intriguing
field within condensed matter physics, these studies have delved into
topics such as liquid quantum droplets, dipolar supersolids [11,12],
and simulating superfluid-to-Mott insulator transition in twisted-bilayer
square lattices [13]. In various studies on BECs, the introduction of spin
particles has emerged as a focal point, particularly with the significant
development of spintronics and quantum information science. A more
complex and realistic dynamic system is described by spin-𝐹 BECs,
which differs from standard BECs by taking into account the interaction
between particle spin and orbital motion [14–17]. This model offers
new possibilities for the development and application of quantum
information processing, quantum simulation, and quantum computing
technologies. A growing number of relevant experiments, such as
Raman lasers induced transitions [18–20], spin currents induced by
spin-dependent force [21,22], and vortex-lattice formation [23,24], are
further driving the need for the refinement of associated theories.

On the other hand, the 𝛿-function describing quantities in limiting
cases finds extensive applications in nonlinear systems in quantum
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mechanics. For example, it is used in the study of collective exci-
tations of one-dimensional quantum droplets [25–27], the research
of self-adjoint extensions in the propagation of quantum fields for
Dirac operators [28], as well as the analysis of fast soliton scatter-
ing [29]. Previous interesting studies pointed out that  -symmetry
can make non-Hermitian Hamiltonian systems with complex-valued
potentials possibly support fully real linear spectra and stable non-
linear modes [6,30]. Moreover,  -symmetric 𝛿-function potentials
support stable peakons in the Kerr nonlinear Schrödinger equation
(NLSE) [31,32]. The NLSE involving the introduction of 𝛿-function
potentials has been explored in depth, enhancing our comprehension
of the description of a planar waveguide in nonlinear optics [33–36].
Similarly, focusing on the study of peakons is particularly advanta-
geous as it allows for a deeper understanding of the introduction
of 𝛿-function potentials in BECs, local perturbations, defects, and in-
teractions in nonlinear systems. Thus, some research has analyzed
one-dimensional/quasi-one-dimensional spin-0 BECs systems, including
the exact peakon solutions in the Salerno model [37,38], the drag force
on an impurity in the superfluidity of quasi-one-dimensional BECs [39,
40], and the introduction of  -symmetric double-𝛿 potentials in the
GPE [41–43]. However, there has been relatively little research on
peakons in multi-component nonlinear systems with a spinor order
parameter 𝐹 = 1.

In this paper, based on above reasons, we introduce  -symmetric
𝛿-function potential into the spin-1 BECs, described by a system of
960-0779/© 2024 Elsevier Ltd. All rights reserved.
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three coupled GPEs. The corresponding generalized Hamiltonian of the
mean-field spin-1 BECs system can be written as

𝐻 = ∫

{

[

𝜳 †( ℏ
2

2𝑚
𝜕2𝑥 + 𝑽 )𝜳

]

+
[1
2
𝑐0𝑛

2 + 1
2
𝑐2|𝑭 |

2]
}

𝑑𝑥, (1)

here 𝜳 (𝑥, 𝑡) = (𝜓+, 𝜓0, 𝜓−)T is a vector order parameter, ‘‘†’’ denotes
he matrix conjugate transpose, ℏ is the reduced Planck constant, 𝑚

denotes the atomic mass, i denotes the imaginary unit, 𝑛 = |𝜓+|
2 +

|𝜓0|
2 + |𝜓−|

2 is the particle density, 𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧)T is the spin
polarization vector with 𝐹𝜇 = 𝜳 †𝑓𝜇𝜳 (𝜇 = 𝑥, 𝑦, 𝑧), 𝑐0 and 𝑐2 represent
he mean-field and spin-exchange interaction, respectively [44,45]. In
his case, the external potential matrix and the spin matrices are defined
s

𝑽 =
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⎤
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⎥

⎦
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Governed by the variational principle iℏ𝜕𝑡𝜓𝑗 = 𝛿𝐻∕𝛿𝜓∗
𝑗 (𝑗 = +, 0,−),

the corresponding GPEs can be expressed as

iℏ𝜕𝑡𝜓+ = − ℏ2

2𝑚
𝜕2𝑥𝜓+ + 𝑉+(𝑥)𝜓+ + (𝑐0 + 𝑐2)(|𝜓+|

2 + |𝜓0|
2)𝜓+

+ (𝑐0 − 𝑐2)|𝜓−|
2𝜓+ + 𝑐2𝜓2

0𝜓
∗
−,

iℏ𝜕𝑡𝜓0 = − ℏ2

2𝑚
𝜕2𝑥𝜓0 + 𝑉0(𝑥)𝜓0 + (𝑐0 + 𝑐2)(|𝜓+|

2 + |𝜓−|
2)𝜓0 (2)

+ 𝑐0|𝜓0|
2𝜓0 + 2𝑐2𝜓+𝜓−𝜓

∗
0 ,

ℏ𝜕𝑡𝜓− = − ℏ2

2𝑚
𝜕2𝑥𝜓− + 𝑉−(𝑥)𝜓− + (𝑐0 + 𝑐2)(|𝜓0|

2 + |𝜓−|
2)𝜓−

+ (𝑐0 − 𝑐2)|𝜓+|
2𝜓− + 𝑐2𝜓2

0𝜓
∗
+.

Eqs. (2) are obtained by taking into account the longitudinal compo-
nents of the wave functions on the transverse plane (𝑦, 𝑧) of the coupled
three-dimensional GPEs [46–48].

Particularly, we consider the conditions ℏ = 1, 𝑚 = 0.5, 𝑐0 =
𝑐2 = −0.5𝑘2, rescale the variable by the transformation (𝜓+, 𝜓0, 𝜓−)
to (𝜓+,

√

2𝜓0, 𝜓−), and introduce gain-and-loss distribution 𝑊𝑗 (𝑥) (𝑗 =
+, 0,−) into Eqs. (2). Consequently, we obtain the dimensionless three-
component GPEs under the influence of a  -symmetric 𝛿-function
otential:

i𝜓+,𝑡 + 𝜓+,𝑥𝑥 + 𝑘2(||𝜓+
|

|
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|
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|

|
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∗
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|
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2)𝜓0 + 𝑘2𝜓+𝜓−𝜓
∗
0 − 𝑈0(𝑥)𝜓0 = 0,

(3)

i𝜓−,𝑡 + 𝜓−,𝑥𝑥 + 𝑘2(2 ||𝜓0
|

|

2 + |

|

𝜓−
|

|

2)𝜓− + 𝑘2𝜓2
0𝜓

∗
+ − 𝑈−(𝑥)𝜓− = 0,

where 𝜓𝑗 = 𝜓𝑗 (𝑥, 𝑡), 𝑈𝑗 (𝑥) = 𝑉𝑗 (𝑥) + i𝑊𝑗 (𝑥) (𝑗 = +, 0,−) are complex
functions. The subscript denotes the partial derivative with respect to
variables and the star denotes the complex conjugate. These equations
can describe the spin-1 BECs system, allowing us to explore peakons
with three coupled interactions, a topic that has been rarely discussed
in previous research. This also confirms that introducing  -symmetric
potentials into unstable systems may lead to the generation of stable
nonlinear modes. We conducted a study on stable peakons generated
by introducing  -symmetric 𝛿-function potentials, exploring the pat-
terns of mean-field and spin-exchange interaction in relation to peakon
energy variations. This research might contribute to a more compre-
hensive understanding of nonlinear systems and provide reference for
future related experiments.

The remaining structure of this paper is organized as follows: In
Section 2, we provide the specific form of the classical 𝛿-function
potentials and present the analytical peakon solutions corresponding
to Eq. (3). In Section 3, we conduct a analysis of families of analytical
solutions, investigating how variations in parameters affect the shape
2

of these curves. Subsequently, we explore the evolution of both stable
and unstable peakon solutions corresponding to points on these curves.
In Section 4, we extend our analysis beyond analytical solutions by
employing the squared-operator iterative algorithms [49] to obtain
diverse families of numerical solutions for different nonlinear modes.
Similarly, we conduct an analysis of energy curves, as well as the
corresponding peakons. In Section 5, we summarize some conclusions.

2. Analytical peakon solutions with  -symmetric 𝜹-function po-
tentials

In this paper, we choose  -symmetric 𝛿-function potentials in the
form as

𝑉𝑗 (𝑥) = 𝑣𝑗𝛿(𝑥),

𝑊𝑗 (𝑥) = 𝑤𝑗 sgn(𝑥)𝜌𝑗 (𝑥), 𝑗 = +, 0,−, (4)

where 𝜌𝑗 (𝑥) = e−𝜆𝑗 |𝑥|, 𝜆𝑗 , 𝑣𝑗 , 𝑤𝑗 are all real parameters, and ‘‘sgn(𝑥)’’
denotes the sign function. Next, we focus on the expression form of
the stationary solutions given by 𝜓𝑗 (𝑥, 𝑡) = 𝛷𝑗 (𝑥)e

i𝜇𝑗 𝑡, where 𝛷𝑗 (𝑥) =
𝜙𝑗 (𝑥)e

i𝛾𝑗 (𝑥) (𝑗 = +, 0,−).
Through the stationary transformation and solving the linear spec-

trum problem which is simplified with the constraints 𝜆𝑗 = 𝜆, 𝑣𝑗 =
𝑣,𝑤𝑗 = 𝑤, 𝜇𝑗 = 𝜆2, 𝑉𝑗 (𝑥) = 𝑉 (𝑥),𝑊𝑗 (𝑥) = 𝑊 (𝑥), as derived subsequently,
we obtained the  -symmetry breaking lines which indicating the
stability of the background solution in Fig. 1. We define whether the
max imaginary part of background eigenvalues is greater than 10−5 to
distinguish between  -broken and  -unbroken. In Fig. 1(a), it can
be observed that the domains of unbroken get larger with the increase
of 𝜆. The red dashed line represents the case of 𝜆 = 0.35, where region
I is  -unbroken, regions II and III are  -broken. The blue solid
line represents the case of 𝜆 = 1.8, where regions I and II are  -
unbroken, region III is  -broken. In Fig. 1(b), we select the case of
𝜆 = −0.5𝑣 for analysis.  -unbroken region IV and  -broken region
V precisely corresponding to the situation depicted in Fig. 2(a). We
marked the positions corresponding to points A, B, C, and D in Fig. 2(a)
on Fig. 1(b), allowing a clear visualization that points B, C are  -
unbroken, while points A, D are  -broken. Furthermore, in Table 1,
we provide the stability of the background solutions corresponding to
the points mentioned in this paper.

To obtain nonlinear modes in Eqs. (3) with assumed condition 2𝜇0 =
+ + 𝜇−, we can derive the stationary form as

−𝜇+ +
𝜙+,𝑥𝑥

𝜙+
− 𝛾2+,𝑥 + i𝛾+,𝑥𝑥 + 2i𝛾+,𝑥

𝜙+,𝑥

𝜙+
+ 𝑘2(𝜙2

+ + 2𝜙2
0) + 𝑘

2𝜙2
0
𝜙−

𝜙+
− 𝑈+(𝑥) = 0,

−𝜇0 +
𝜙0,𝑥𝑥

𝜙0
− 𝛾20,𝑥 + i𝛾0,𝑥𝑥 + 2i𝛾0,𝑥

𝜙0,𝑥

𝜙0
+ 𝑘2(𝜙2

+ + 𝜙2
0 + 𝜙

2
−) + 𝑘

2𝜙+𝜙− − 𝑈0(𝑥) = 0,

(5)

−𝜇− +
𝜙−,𝑥𝑥

𝜙−
− 𝛾2−,𝑥 + i𝛾−,𝑥𝑥 + 2i𝛾−,𝑥

𝜙−,𝑥

𝜙−
+ 𝑘2(2𝜙2

0 + 𝜙
2
−) + 𝑘

2𝜙2
0
𝜙+

𝜙−
− 𝑈−(𝑥) = 0.

Furthermore, considering the result under 𝜙2
0(𝑥) = 𝜙+(𝑥)𝜙−(𝑥),

where the parameters satisfy the relationship 𝜇𝑗 = 𝜆2𝑗 , 𝜆𝑗 = 𝜆, 𝑣𝑗 = 𝑣 =
−2𝜆, we obtain the analytical expression form of the desired solutions,
reading as

𝜌𝑗 (𝑥) = 𝜌(𝑥) = e−𝜆|𝑥|,

𝜙𝑗 (𝑥) = 𝐴𝑗𝜌(𝑥), (6)

𝛾𝑗 (𝑥) =
𝑤
3𝜆2

sgn(𝑥)[𝜌(𝑥) − 1],

𝑤𝑗 = 𝑤 = −3𝑘𝜆(𝐴+ + 𝐴−), 𝑗 = +, 0,−,

here 𝑘 denotes the equation parameter in Eqs. (3), 𝐴2
0 = 𝐴+𝐴−, and in

fact, 𝛾𝑗 (𝑥) = ∫ 𝑥 𝜙𝑗 (𝑠)𝑑𝑠. The peakon solutions we obtained have finite-
order weak derivatives at the peak point due to the property of the
𝛿-function.

The linear stability of the nonlinear modes is a critical indicator to
measure the properties of the solutions. We substitute the perturbed
solutions 𝜓𝑗 (𝑥, 𝑡) into Eqs. (3), in the form

𝜓 (𝑥, 𝑡) = 𝜙 (𝑥)ei𝛾𝑗 (𝑥)ei𝜇𝑗 𝑡+ 𝜖
[

𝑓 (𝑥)ei𝛿𝑡+𝑔∗(𝑥)e−i𝛿
∗𝑡]ei𝜇𝑗 𝑡, 𝑗 = +, 0,−, (7)
𝑗 𝑗 𝑗 𝑗
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Fig. 1. The domains of broken/unbroken linear  -symmetric phases. (a) The red dashed line indicates the case of 𝜆 = 0.35, and the blue solid line indicates the case of 𝜆 = 1.8.
(b) The blue solid line indicates the case of 𝜆 = −0.5𝑣.
Table 1
Stability of the background solutions corresponding to the points mentioned in this paper.

Figure Fig. 2 Fig. 4 Fig. 6

Point corresponds
to peakon solution

A B C D F G Q1 Q2

Max imaginary part of
background eigenvalues

0.0812 9.0 × 10−15 9.3 × 10−8 0.0883 2.7 × 10−12 7.8 × 10−15

 -broken/unbroken
(background stability)

broken unbroken unbroken broken unbroken unbroken

Peakon stability unstable stable stable unstable stable unstable stable stable
where 𝜖 ≪ 1, and 𝑓𝑗 (𝑥), 𝑔𝑗 (𝑥) are components of the corresponding
eigenfunction. We can obtain the corresponding linear eigenvalue prob-
lem. The eigenvalues determine the linear stability of the solutions
𝜓𝑗 (𝑥, 𝑡). If all imaginary parts of eigenvalues are less than 10−5, we
consider the solutions to be linearly stable; otherwise, they are linearly
unstable. We use the Fourier collocation method in our numerical
simulation to discretize the corresponding differential operator into a
matrix. By appropriately choosing parameters in the numerical method,
the spectrum of the discretization matrix, which is solvable, serves as
a reliable approximation for that of the original differential operator.
Additionally, in this paper, we investigate the stability of nonlinear
modes by numerically evolving them with 5% perturbations as the
initial condition in the evolutionary program of peakons.

3. Families of analytical peakon solutions

We use 𝑃𝑗 = ∫ (|𝛷𝑗 |2∕2)𝑑𝑥 to represent the energy of the solutions,
introducing the Poynting vector 𝑆𝑗 = i(𝛷𝑗𝛷∗

𝑗,𝑥−𝛷
∗
𝑗𝛷𝑗,𝑥)∕2, and the total

number flux through the origin 𝐽 =
∑

i(𝛷∗
𝑗𝛷𝑗,𝑥−𝛷𝑗𝛷

∗
𝑗,𝑥)

|

|

|𝑥=0
to describe

energy flux [50], where 𝛷𝑗 (𝑗 = +, 0,−) denotes the stationary peakon
solution. Based on the previously mentioned method of introducing 𝛿-
function external potentials in spin-1 BECs for analytically modulating
peakons, we employ the constraints expressed by Eqs. (6) and the form
of the solutions to plot the families of analytical peakon solutions with
the energy of analytical peakons and the external potential parameter
𝜆 as coordinate axes. We can easily obtain energy curves for analytical
peakons with different amplitudes. For the sake of clarity, here we take
the curve that satisfies the maximum amplitude consistency |𝐴𝑗 | = |𝐴|,
𝑃𝑗 = 𝑃 (𝑗 = +, 0,−), as an example.

Under the condition of 𝑘 = 1 for the three-coupled GPEs, we obtain
the family of analytical peakon solutions illustrated in Fig. 2(a) using
a solid line, all with |𝐴| = 0.25, and select two points A, B on the
3

curve for further analysis. Point A corresponds to 𝜆 = 0.35, 𝑃 = 0.7280,
and point B corresponds to 𝜆 = 1.8, 𝑃 = 0.1438. The evolutionary
results of the two sets of peakons represented by points A, B, after
undergoing 5% perturbations as the initial condition, are depicted in
Figs. 2(b1)–(b3) and 2(c1)–(c3), respectively. Point A corresponds to an
unstable situation, while point B corresponds to a stable one, and their
eigenvalue distributions are also reflected in Figs. 2(b4) and 2(c4).

Under the condition of unchanged parameters, changing only |𝐴| of
the modulated peakon solutions can affect the stability of the resulting
peakons. Points C and D in Fig. 2(a) illustrate this phenomenon. Point
C, relative to point A, corresponds to peakon solutions with 𝑘 = 1,
𝜆 = 0.35, remaining unchanged, but the amplitude decreases from
|𝐴| = 0.25 to |𝐴| = 0.1, and the energy decreases from 𝑃 = 0.7280
to 𝑃 = 0.1165, resulting in stability. Conversely, point D, relative to
point B, corresponds to peakon solutions with 𝑘 = 1, 𝜆 = 1.8, remaining
unchanged, but the amplitude increases from |𝐴| = 0.25 to |𝐴| = 1.2,
and the energy increases from 𝑃 = 0.1438 to 𝑃 = 3.3123, resulting in
instability. Furthermore, as depicted by the dashed lines in Fig. 2(a),
point C can be viewed as a point on the curve of analytical peakon
solutions with |𝐴| = 0.1, and point D can be viewed as a point on the
curve of analytical peakon solutions with |𝐴| = 1.2.

We investigate the relationship between 𝐽 and 𝑤 under the con-
dition 𝑤𝑗 = 𝑤, and the results are shown in Fig. 3. In Fig. 3(a), we
consider the case satisfying the analytical conditions 𝑘 = 1, 𝜆+ = 𝜆0 =
𝜆− = 𝜆, 𝐴+ = 𝐴0 = 𝐴− = −𝑤∕6𝜆. The blue solid line represents 𝜆 = 1.8,
and the red dashed line represents 𝜆 = 0.35, corresponding to the total
number flux at points A, B, C, and D in Fig. 2(a). Furthermore, we
conduct a study on the total number flux from the numerical solutions.
The points corresponding to F, G, Q1, Q2 on Figs. 4(a1) and 6(a1)
are marked in Fig. 3(b)–(c). In Fig. 3(b), 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 0.7,
𝜆− = 1.2, 𝑣+ = −3, 𝑣0 = −2.1, 𝑣− = −3.6. The blue solid line represents
𝑃 = 1, 𝑃 = 0.01, 𝑃 = 2.99, and the red dashed line represents
+ 0 −
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Fig. 2. Families of analytical peakons and their evolution. (a) Families of analytical peakons with coordinates 𝑃 and 𝜆. (b1)–(b4) The evolution of unstable analytical peakons
corresponding to point A in (a) and their linear stability eigenvalues. (c1)–(c4) The evolution of stable analytical peakons corresponding to point B in (a) and their linear stability
eigenvalues. (d1)–(d4) The evolution of stable analytical peakons corresponding to point C in (a) and their linear stability eigenvalues. (e1)–(e4) The evolution of unstable analytical
peakons corresponding to point D in (a) and their linear stability eigenvalues. Maximum amplitudes are chosen as |𝐴+| = |𝐴0| = |𝐴−| = |𝐴|. Point A corresponds to 𝑘 = 1, 𝜆 = 0.35,
𝑃 = 0.7280, |𝐴| = 0.25; point B corresponds to 𝑘 = 1, 𝜆 = 1.8, 𝑃 = 0.1438, |𝐴| = 0.25; point C corresponds to 𝑘 = 1, 𝜆 = 0.35, 𝑃 = 0.1165, |𝐴| = 0.1; point D corresponds to 𝑘 = 1,
𝜆 = 1.8, 𝑃 = 3.3123, |𝐴| = 1.2.
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Fig. 3. The total number flux through the origin. (a) 𝐽 with the analytical solutions. The parameters are 𝑘 = 1, 𝜆+ = 𝜆0 = 𝜆− = 𝜆, 𝐴+ = 𝐴0 = 𝐴− = −𝑤∕6𝜆. The blue solid line
represents 𝜆 = 1.8, and the red dashed line represents 𝜆 = 0.35. (b) 𝐽 with the numerical solutions. The parameters are 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 0.7, 𝜆− = 1.2, 𝑣+ = −3, 𝑣0 = −2.1,
𝑣− = −3.6. The blue solid line represents 𝑃+ = 1, 𝑃0 = 0.01, 𝑃− = 2.99, and the red dashed line represents 𝑃+ = 0.5, 𝑃0 = 1.51, 𝑃− = 1.99. (c) 𝐽 with the numerical solutions. The
parameters are 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 1.3, 𝜆− = 1.2, 𝑣+ = −2, 𝑣0 = −2.6, 𝑣− = −2.4. The blue solid line represents 𝑃+ = 0.4285, 𝑃0 = 0.7380, 𝑃− = 2.0335, and the red dashed line
epresents 𝑃+ = 1.8615, 𝑃0 = 0.7380, 𝑃− = 0.6005.
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+ = 0.5, 𝑃0 = 1.51, 𝑃− = 1.99. In Fig. 3(c), 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 1.3,
− = 1.2, 𝑣+ = −2, 𝑣0 = −2.6, 𝑣− = −2.4. The blue solid line represents
+ = 0.4285, 𝑃0 = 0.7380, 𝑃− = 2.0335, and the red dashed line
epresents 𝑃+ = 1.8615, 𝑃0 = 0.7380, 𝑃− = 0.6005. In Fig. 3(a)–(b)
he variation of 𝐽 with 𝑤 appears normal. However, in Fig. 3(c), the
ariation of 𝐽 with 𝑤 appears anomalous when the parameter 𝑤 near
he  -broken/unbroken boundary.

. Families of numerical peakon solutions

Since BECs can be implemented experimentally using physical
ethods such as Feshbach resonance imposed by tightly focused laser

eams [51], it becomes more practically relevant to describe the system
arameters for the three coupled GPEs and the families of peakon
olutions. Besides, the above solutions obtained through the analytical
ethod have various constraints between parameters and variables.
ased on this, in order to remove the constraint conditions and change
he propagation coefficients, we further derived other fundamental
eakons using numerical methods. Here, we generalize the coefficients
f the cubic terms |𝜓+|

2𝜓+, |𝜓0|
2𝜓+, and |𝜓−|

2𝜓+ in the first equation
f Eqs. (3) from 𝑘2, 2𝑘2, 0 to 𝑎+, 𝑎0, 𝑎− for the purpose of our study. We
mploy the power-conserving squared-operator iterative algorithms to
btain families of nonlinear modes and plot the energy curves with the
nergy of numerical solutions and the propagation coefficient as coor-
inate axes. By using the linear stability analysis method described in
he previous section, we can easily determine the stability of each point
n the energy curves. Similarly, the evolution with 5% perturbations is
erformed.

To investigate the influence of different parameters on the families
f nonlinear modes, we take the representative curve with 𝑃+ and 𝜇+

as the coordinate axes, shown in Fig. 4(a1), as the baseline and use the
method of controlling variables to study the influence of parameters 𝜆+,
𝑎+, 𝑎0, and 𝑎−, which are most closely related to it. The parameters of
the baseline are chosen as 𝑎+ = 1, 𝑎0 = 2, 𝑎− = 0, 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 0.7,
𝜆− = 1.2, 𝑣+ = −3, 𝑣0 = −2.1, 𝑣− = −3.6, 𝑤+ = 𝑤0 = 𝑤− = −0.3

√

2.
urthermore, Fig. 4(a2)–(a5) illustrate the families of nonlinear modes
nder the variation of parameters.

As 𝜆+ increases, the entire curve shifts towards larger 𝜇+ values.
ncreasing 𝑎+ causes the most significant change in the curve by moving
he upper prominent point towards larger 𝜇+ values in a substantial

manner, while the lower prominent point moves slightly, and the
lower endpoint shows no significant change. Increasing 𝑎0 causes the
upper and lower prominent points to move towards larger 𝜇+ values,
expanding the range of 𝜇+ values covered by the curve. The variation
of 𝑎−, to a certain extent, even leads to a change in the direction of
5

prominence of the curve.
It is worth noting that on the curve shown in Fig. 4(a1), one 𝜇+
an correspond to multiple different 𝑃+ values. This means that under
he same propagation coefficient condition, we can obtain multiple
olutions with different energy. In this case, the other two propagation
oefficients may be different. In addition, we selected points F and G
n the curve shown in Fig. 4(a1) for further study. Point F corresponds
o 𝑃+ = 1, 𝑃0 = 0.01, 𝑃− = 2.99, 𝜇+ = 2.2724, 𝜇0 = 2.0166,
− = 3.6344; point G corresponds to 𝑃+ = 0.5, 𝑃0 = 1.51, 𝑃− = 1.99,
+ = 3.2343, 𝜇0 = 1.8666, 𝜇− = 4.1068. By evolving the nonlinear modes
orresponding to these two points, we obtained their evolution and
nergy flux in Fig. 4(b1)–(d3). It is evident that point F corresponds to a
table situation, whereas point G corresponds to an unstable scenario.
y applying the stability analysis method mentioned in the previous
ection, we can determine the stability of each point on the families of
onlinear modes and validate it through the evolution of the nonlinear
odes.

Due to the fact that ‘long’ impurities may act as centers of spon-
aneous nucleation of solitons [52], to investigate the interaction of
ree-standing solitons with impurities, we can consider the obtained
tationary peakons as ‘long’ impurities in space. In this paper, we
hoose Gaussian solitons as outside exotic solitons and considered the
ollowing initial conditions

𝜓𝑗 (𝑥, 0) = 𝜓𝑗 (𝑥, 0) + 𝑞𝑗e−0.05(𝑥+25)
2+3i𝑥, 𝑗 = +, 0,−, (8)

where 𝑞𝑗 represents the modulus of Gaussian soliton. Fig. 5(a1)–(b3)
correspond to analytical peakons at 𝑘 = 1, 𝜆 = 1.8, 𝑃 = 0.1438, |𝐴| =
0.25 (representing the situation depicted in Fig. 2(c1)–(c3)), while
Fig. 5(c1)–(c3) correspond to numerical peakons at 𝑃+ = 1, 𝑃0 = 0.01,
𝑃− = 2.99, 𝜇+ = 2.2724, 𝜇0 = 2.0166, 𝜇− = 3.6344 (representing the
situation depicted in Fig. 4(c1)–(c3)). For Fig. 5(a1)–(a3), we choose
𝑞+ = 𝑞0 = 𝑞− = 0.25. For Fig. 5(b1)–(b3), 𝑞+ = 0.05, 𝑞0 = 0.25, 𝑞− = 1.25,
and for Fig. 5(c1)–(c3), 𝑞+ = 𝑞0 = 𝑞− = 0.5. We can observe that
after the interaction between solitons and peakons, a portion of the
solitons continue to propagate forward along their original direction,
while another parts are ‘reflected’ back, propagating along the ‘mirror’
direction.

Similarly, we can apply the same analysis to the two groups of
families of nonlinear modes formed by (𝜇0, 𝑃0) and (𝜇−, 𝑃−). On the
curve with 𝑃0 and 𝜇0 as the coordinate axes, we discover a closed-
loop structure resembling the number ‘‘8’’ lying on its side, as shown
in Fig. 6(a2), where the coordinates of points M, N, Q are respectively
(2.1826,0.2211), (2.3035,0.010), (2.2496,0.7380). This indicates that
the point Q on Fig. 6(a2) corresponds to two points Q1 and Q2 on
Fig. 6(a1) or Fig. 6(a3), namely two sets of nonlinear modes with
identical energy 𝑃0 and propagation coefficient 𝜇0, but with different
𝑃+, 𝑃−, 𝜇+, and 𝜇− values. The parameters for these families of nu-
merical peakon solutions are chosen as 𝑘 = 1, 𝜆 = 1, 𝜆 = 1.3,
+ 0
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Fig. 4. Families of numerical peakons and their evolution. (a1) Families of numerical peakons with coordinates 𝑃+ and 𝜇+, which is used as a baseline for subsequent analysis.
(a2)–(a5) Families of nonlinear modes and the impacts of the parameters. (b1)–(b3) The evolution of unstable numerical peakons corresponding to point G in (a1). (c1)–(d3) The
evolution of stable numerical peakons and their energy flux corresponding to point F in (a1). The parameters for the baseline are chosen as 𝑎+ = 1, 𝑎0 = 2, 𝑎− = 0 (𝑘 = 1), 𝜆+ = 1,
𝜆0 = 0.7, 𝜆− = 1.2, 𝑣+ = −3, 𝑣0 = −2.1, 𝑣− = −3.6, 𝑤+ = 𝑤0 = 𝑤− = −0.3

√

2. Point F corresponds to 𝑃+ = 1, 𝑃0 = 0.01, 𝑃− = 2.99, 𝜇+ = 2.2724, 𝜇0 = 2.0166, 𝜇− = 3.6344; point G
corresponds to 𝑃+ = 0.5, 𝑃0 = 1.51, 𝑃− = 1.99, 𝜇+ = 3.2343, 𝜇0 = 1.8666, 𝜇− = 4.1068.
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Fig. 5. Interactions of Gaussian solitons with peakon impurities. (a1)–(b3) correspond to analytical peakons at 𝑘 = 1, 𝜆 = 1.8, 𝑃 = 0.1438, |𝐴| = 0.25, while (c1)–(c3) correspond to
numerical peakons at 𝑃+ = 1, 𝑃0 = 0.01, 𝑃− = 2.99, 𝜇+ = 2.2724, 𝜇0 = 2.0166, 𝜇− = 3.6344. For (a1)–(a3), 𝑞+ = 𝑞0 = 𝑞− = 0.25. For (b1)–(b3), 𝑞+ = 0.05, 𝑞0 = 0.25, 𝑞− = 1.25. For
(c1)–(c3), 𝑞+ = 𝑞0 = 𝑞− = 0.5.
𝜆− = 1.2, 𝑣+ = −2, 𝑣0 = −2.6, 𝑣− = −2.4, 𝑤+ = 𝑤0 = 𝑤− =
−0.4. Figs. 6(b1)–(c3) and 6(d1)–(d3) correspond to two distinct sets of
peakon solutions of point Q in Fig. 6(a2). Two sets of peakon solutions
correspond to the same energy and propagation coefficient for 𝜓0,
namely 𝑃0 = 0.7380 and 𝜇0 = 2.2496. However, for the parameters
describing 𝜓+ and 𝜓−, Figs. 6(b1)–(c3) and 6(d1)–(d3) correspond to
the cases of 𝑃+ = 0.4285, 𝑃− = 2.0335, 𝜇+ = 1.4713, 𝜇− = 1.9661 (point
Q1) and 𝑃+ = 1.8615, 𝑃− = 0.6005, 𝜇+ = 1.4803, 𝜇− = 1.8877 (point
Q2), respectively. Furthermore, as shown in Figs. 6(b1)–(b3) and 6(d1)–
(d3), these two peakons exhibit evident periodic behavior during their
evolution, which can be regarded as a manifestation of internal energy
transfer within the coupled system.

5. Conclusion

By introducing  -symmetric 𝛿-function potentials into three-
component GPEs that describe spinor 𝐹 = 1 BECs, we obtain both stable
and unstable analytical peakon solutions. These solutions allow us to
explore the patterns of mean-field and spin-exchange interactions as
7

they relate to variations in the energy of nonlinear modes, which also
proves the significance of  -symmetric potentials in manipulating
nonlinear interactions. Furthermore, through the utilization of iterative
algorithms, we generate a series of numerical solutions and represent
various families of peakons in the form of energy curves. This approach
helps us understand the influence of parameters on these curves.
Moreover, we make a noteworthy observation of an intriguing closed-
loop structure within the family of peakons, with 𝑃0 and 𝜇0 serving as
the coordinate axes. Point Q on this curve corresponds to two sets of
nonlinear modes with identical energy 𝑃0 and propagation coefficient
𝜇0, but with different values for 𝑃+, 𝑃−, 𝜇+, and 𝜇−. After undergoing
evolution with 5% perturbations applied as the initial condition, we
confirm the stability of these two sets of peakons and observe dis-
tinct periodic oscillatory properties, which can be considered as an
indication of internal energy transfer within the coupled system.

In summary, we offer a new perspective on the behavior of peakons
in spin-1 BECs system with  -symmetric potentials, which might con-
tribute to a more comprehensive understanding of coupled nonlinear
systems and serve as a reference for future experiments in this domain.
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Fig. 6. Families of numerical peakons and their evolution. (a1)–(a3) Families of numerical peakons with coordinates 𝑃𝑗 and 𝜇𝑗 (𝑗 = +, 0,−), and the point Q corresponds to two
distinct sets of peakon solutions. (b1)–(c3) The evolution of stable numerical peakons and their energy flux corresponding to point Q in (a2) (point Q1 in (a1) and (a3)). (d1)–(d3)
The evolution of another group of stable numerical peakons corresponding to point Q in (a2) (point Q2 in (a1) and (a3)). The parameters are chosen as 𝑘 = 1, 𝜆+ = 1, 𝜆0 = 1.3,
𝜆− = 1.2, 𝑣+ = −2, 𝑣0 = −2.6, 𝑣− = −2.4, 𝑤+ = 𝑤0 = 𝑤− = −0.4. (b1)–(c3) correspond to 𝑃+ = 0.4285, 𝑃0 = 0.7380, 𝑃− = 2.0335, 𝜇+ = 1.4713, 𝜇0 = 2.2496, 𝜇− = 1.9661; (d1)–(d3)
correspond to 𝑃+ = 1.8615, 𝑃0 = 0.7380, 𝑃− = 0.6005, 𝜇+ = 1.4803, 𝜇0 = 2.2496, 𝜇− = 1.8877.
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